Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jin-Sheng Gao,* Shuang Zhang, Guang-Feng Hou, Yan-Jun Hou and Peng-Fei Yan

College of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China

Correspondence e-mail: hgf1000@163.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.029$
$w R$ factor $=0.090$
Data-to-parameter ratio $=16.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
(E)-2-[(1,2,3-Thiadiazol-5-yl)iminomethyl]phenol

In the title compound, $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{OS}$, the structure is stabilized by intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ and intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds. The intermolecular hydrogen bonds link the molecules into a three-dimensional supramolecular network.

Comment

The title compound, (I), with a number of reactive centers, could be an excellent candidate for the construction of supramolecular architectures.

(I)

In (I) the rings A and B are essentially coplanar, with a dihedral angle between the two rings of 1.17 (11) ${ }^{\circ}$ (Fig. 1). The bonding about S 1 is slightly asymmetrical (Table 1). The remaining bond lengths and angles of ring A are in agreement with values reported for similar structures (Capuano et al., 1983).

The structure is stabilized by intramolecular and intermolecular hydrogen-bond interactions (Table 2). In the crystal structure, adjacent molecules are linked via intermolecular $\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{O} 1^{\mathrm{ii}}$ interactions into a one-dimensional infinite chain. In addition, $\mathrm{C} 3-\mathrm{H} 2 \cdots \mathrm{~N} 2^{\mathrm{i}}$ hydrogen bonds link these chains into a three dimensional supramolecular network (Fig. 2).

Figure 1
The molecular structure of (I), showing displacement ellipsoids at the 50% probability level for non-H atoms. The dotted line indicates the intramolecular hydrogen bond.

Experimental

1,2,3-Thiadiazol-5-amine was prepared as described in the literature (Guo, 1998). 1,2,3-Thiadiazol-5-amine $(10.1 \mathrm{~g}, 0.1 \mathrm{~mol})$ and 2 hydroxybenzaldehyde ($12.2 \mathrm{~g}, 0.1 \mathrm{~mol}$) were dissolved in 30 ml of methanol. The mixture was stirred at room temperature for 24 h . The resulting yellow-orange precipitate was removed, washed with methanol and then dried in vacuo. Suitable single crystals were grown by slow evaporation from an ethanol solution (yield 75%,).

Crystal data

$\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{OS}$
$M_{r}=205.25$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=4.7477$ (9) \AA
$b=11.415$ (2) \AA
$c=16.798$ (3) A
$V=910.4(3) \AA^{3}$

Data collection

Rigaku R-AXIS RAPID diffractometer
ω scans
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.861, T_{\text {max }}=0.934$

$Z=4$

$D_{x}=1.497 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.32 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, yellow
$0.48 \times 0.33 \times 0.21 \mathrm{~mm}$

8509 measured reflections
2054 independent reflections
1861 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.022$
$\theta_{\text {max }}=27.5^{\circ}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.090$
$S=1.17$
2054 reflections
128 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0581 P)^{2}\right] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.30 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.32 \mathrm{e} \AA^{-3} \\
& \text { Absolute structure: Flack (1983), } \\
& \quad 808 \text { Friedel pairs } \\
& \text { Flack parameter: } 0.01(8)
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right.$).

$\mathrm{S} 1-\mathrm{N} 1$	$1.6950(18)$	$\mathrm{N} 2-\mathrm{N} 1$	$1.286(2)$
$\mathrm{S} 1-\mathrm{C} 2$	$1.7186(16)$	$\mathrm{N} 2-\mathrm{C} 1$	$1.352(2)$
$\mathrm{C} 2-\mathrm{C} 1$	$1.369(3)$		
$\mathrm{N} 1-\mathrm{S} 1-\mathrm{C} 2$	$92.74(8)$	$\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 1$	$114.55(17)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 3$	$124.48(15)$	$\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 2$	$115.25(17)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{S} 1$	$106.41(12)$	$\mathrm{N} 2-\mathrm{N} 1-\mathrm{S} 1$	$111.05(13)$

Table 2
Hydrogen-bond geometry ($\left({ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3-\mathrm{H} 2 \cdots \mathrm{~N} 2^{\mathrm{i}}$	0.93	2.67	$3.533(2)$	155
$\mathrm{C} 1-\mathrm{H} 1 \cdots 1^{\mathrm{ii}}$	0.93	2.43	$3.241(2)$	146
$\mathrm{O} 1-\mathrm{H} 7 \cdots \mathrm{~N} 3$	0.82	1.92	$2.6408(18)$	146

[^1]

Figure 2
A partial packing view, showing the three-dimensional hydrogen-bonding network. Dotted lines indicate the hydrogen-bonded interactions. H atoms not involved in hydrogen bonds have been omitted for clarity.

All H atoms were placed in calculated positions and treated as riding on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.93 \AA, \mathrm{O}-\mathrm{H}=0.82 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ and $1.5 U_{\text {eq }}(\mathrm{O})$.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXL97.

The authors thank the National Natural Science Foundation of China (No. 20572018) and Heilongjiang University for supporting this study.

References

Capuano, L., Boschat, P., Müller, I., Zander, R., Schramm, V. \& Hädicke, E. (1983). Chem. Ber. 116, 2058-2067.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Guo, L. (1998). Chinese Patent No. CN1232029A.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.
Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

[^1]: Symmetry codes: (i) $-x, y+\frac{1}{2},-z+\frac{3}{2}$; (ii) $x-\frac{1}{2},-y+\frac{1}{2},-z+2$.

